Probability and Measure 2021-2022

Exam 1

1. [30 points] Let A be a set in the Borel σ-algebra of \mathbb{R}.
(a) Prove that the function $F: \mathbb{R} \rightarrow \mathbb{R}$ defined by $F(x)=m(A \cap(-\infty, x])$ is continuous (m denotes Lebesgue measure).
(b) Assume that A has positive Lebesgue measure. Prove that for every $\delta>0$, there exists $x \in \mathbb{R}$ such that $m(A \cap(x, x+\delta))>0$.

2 [30 points] Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be an integrable function (with respect to the measure space $\left.\left(\mathbb{R}^{d}, \mathcal{B}^{d}, m\right)\right)$. Let E_{1}, E_{2}, \ldots be Borel subsets of \mathbb{R}^{d} with the property that every $x \in$ \mathbb{R}^{d} belongs to at most finitely many of these sets. Prove that

$$
\lim _{n \rightarrow \infty} \int_{E_{n}} f \mathrm{~d} m=0
$$

3. [20 points] Let $\left(\Omega_{1}, \mathcal{F}_{1}\right)$ and $\left(\Omega_{2}, \mathcal{F}_{2}\right)$ be measurable spaces. Assume that Ω_{2} has at least two elements and \mathcal{F}_{2} is the trivial σ-algebra, that is, $\mathcal{F}_{2}=\left\{\Omega_{2}, \varnothing\right\}$. Prove that if $f: \Omega_{1} \times \Omega_{2} \rightarrow \mathbb{R}$ is $\left(\mathcal{F}_{1} \otimes \mathcal{F}_{2}, \mathcal{B}\right)$-measurable, theu $f\left(\omega_{1}, \omega_{2}\right)$ does not depend on ω_{2} (that is, $f\left(\omega_{1}, \omega_{2}\right)=f\left(\omega_{1}, \omega_{2}^{\prime}\right)$ for all $\left.\omega_{1}, \omega_{2}, \omega_{2}^{\prime}\right)$.
4. [10 points] $L^{\circ}(\Omega, \mathcal{A}, \mu)$ be a measure space. Give the definition of the set $\mathcal{L}^{\infty}(\Omega, \mathcal{A}, \mu)$, of the semi-norm $\|\cdot\|_{\infty}$ and of the set $L^{\infty}(\Omega, \mathcal{A}, \mu)$.
+10 free points
