Probability and Measure 2021-2022 Exam 1

- 1. [30 points] Let A be a set in the Borel σ -algebra of \mathbb{R} .
 - (a) Prove that the function $F: \mathbb{R} \to \mathbb{R}$ defined by $F(x) = m(A \cap (-\infty, x])$ is continuous (*m* denotes Lebesgue measure).
 - (b) Assume that A has positive Lebesgue measure. Prove that for every $\delta > 0$, there exists $x \in \mathbb{R}$ such that $m(A \cap (x, x + \delta)) > 0$.
- 2 [30 points] Let $f: \mathbb{R}^d \to \mathbb{R}$ be an integrable function (with respect to the measure space $(\mathbb{R}^d, \mathcal{B}^d, m)$). Let E_1, E_2, \ldots be Borel subsets of \mathbb{R}^d with the property that every $x \in \mathbb{R}^d$ belongs to at most finitely many of these sets. Prove that

$$\lim_{n \to \infty} \int_{E_n} f \, \mathrm{d} m = 0.$$

- 3. [20 points] Let $(\Omega_1, \mathcal{F}_1)$ and $(\Omega_2, \mathcal{F}_2)$ be measurable spaces. Assume that Ω_2 has at least two elements and \mathcal{F}_2 is the trivial σ -algebra, that is, $\mathcal{F}_2 = {\Omega_2, \varnothing}$. Prove that if $f: \Omega_1 \times \Omega_2 \to \mathbb{R}$ is $(\mathcal{F}_1 \otimes \mathcal{F}_2, \mathcal{B})$ -measurable, then $f(\omega_1, \omega_2)$ does not depend on ω_2 (that is, $f(\omega_1, \omega_2) = f(\omega_1, \omega_2')$ for all $\omega_1, \omega_2, \omega_2'$).
- 4. [10 points] Let $(\Omega, \mathcal{A}, \mu)$ be a measure space. Give the definition of the set $\mathcal{L}^{\infty}(\Omega, \mathcal{A}, \mu)$, of the semi-norm $\|\cdot\|_{\infty}$ and of the set $L^{\infty}(\Omega, \mathcal{A}, \mu)$.

+10 free points